3.25 \(\int (b \tan ^n(e+f x))^p \, dx\)

Optimal. Leaf size=59 \[ \frac{\tan (e+f x) \left (b \tan ^n(e+f x)\right )^p \text{Hypergeometric2F1}\left (1,\frac{1}{2} (n p+1),\frac{1}{2} (n p+3),-\tan ^2(e+f x)\right )}{f (n p+1)} \]

[Out]

(Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/2, -Tan[e + f*x]^2]*Tan[e + f*x]*(b*Tan[e + f*x]^n)^p)/(f*(1 + n*
p))

________________________________________________________________________________________

Rubi [A]  time = 0.0400539, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3659, 3476, 364} \[ \frac{\tan (e+f x) \left (b \tan ^n(e+f x)\right )^p \, _2F_1\left (1,\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);-\tan ^2(e+f x)\right )}{f (n p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(b*Tan[e + f*x]^n)^p,x]

[Out]

(Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/2, -Tan[e + f*x]^2]*Tan[e + f*x]*(b*Tan[e + f*x]^n)^p)/(f*(1 + n*
p))

Rule 3659

Int[(u_.)*((b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(b*(c*Tan[e + f*x
])^n)^FracPart[p])/(c*Tan[e + f*x])^(n*FracPart[p]), Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x], x] /; Fre
eQ[{b, c, e, f, n, p}, x] &&  !IntegerQ[p] &&  !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x]
)^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \left (b \tan ^n(e+f x)\right )^p \, dx &=\left (\tan ^{-n p}(e+f x) \left (b \tan ^n(e+f x)\right )^p\right ) \int \tan ^{n p}(e+f x) \, dx\\ &=\frac{\left (\tan ^{-n p}(e+f x) \left (b \tan ^n(e+f x)\right )^p\right ) \operatorname{Subst}\left (\int \frac{x^{n p}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\, _2F_1\left (1,\frac{1}{2} (1+n p);\frac{1}{2} (3+n p);-\tan ^2(e+f x)\right ) \tan (e+f x) \left (b \tan ^n(e+f x)\right )^p}{f (1+n p)}\\ \end{align*}

Mathematica [A]  time = 0.0413329, size = 57, normalized size = 0.97 \[ \frac{\tan (e+f x) \left (b \tan ^n(e+f x)\right )^p \text{Hypergeometric2F1}\left (1,\frac{1}{2} (n p+1),\frac{1}{2} (n p+3),-\tan ^2(e+f x)\right )}{f n p+f} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Tan[e + f*x]^n)^p,x]

[Out]

(Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/2, -Tan[e + f*x]^2]*Tan[e + f*x]*(b*Tan[e + f*x]^n)^p)/(f + f*n*p
)

________________________________________________________________________________________

Maple [F]  time = 10.709, size = 0, normalized size = 0. \begin{align*} \int \left ( b \left ( \tan \left ( fx+e \right ) \right ) ^{n} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e)^n)^p,x)

[Out]

int((b*tan(f*x+e)^n)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \tan \left (f x + e\right )^{n}\right )^{p}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e)^n)^p,x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^n)^p, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (b \tan \left (f x + e\right )^{n}\right )^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e)^n)^p,x, algorithm="fricas")

[Out]

integral((b*tan(f*x + e)^n)^p, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \tan ^{n}{\left (e + f x \right )}\right )^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e)**n)**p,x)

[Out]

Integral((b*tan(e + f*x)**n)**p, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \tan \left (f x + e\right )^{n}\right )^{p}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e)^n)^p,x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^n)^p, x)